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Abstract We develop a model of honey bee colony collapse based on contam-
ination of forager bees in pesticide contaminated spatial environments. The
model consists of differential and difference equations for the spatial distribu-
tions of the uncontaminated and contaminated forager bees. A key feature of
the model is incorporation of the return to the hive each day of forager bees.
The model quantifies colony collapse in terms of two significant properties of
honey bee colonies: (1) the fraction of contaminated forager bees that fail to
return home due to pesticide contamination, and (2) the fraction of forager
bees in the total forager bee population that return to the sites visited on the
previous day. If the fraction of contaminated foragers failing to return home
is high, then the total population falls below a critical threshold and colony
collapse ensues. If the fraction of all foragers that return to previous foraging
sites is high, then foragers who visit contaminated sites multiple times have a
higher probability of becoming contaminated, and colony collapse ensues. This
quantification of colony collapse provides guidance for implementing measures
for its avoidance.
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1 Introduction

The connection of environmental pesticide contamination (EPC) to honey bee
colony collapse disorder (CCD) is controversial. Many scientific studies have
yielded conflicting reports, both supporting ( [9], [24], [24], [32], [33]) and not
supporting ( [12], [13], [14], [15], [21], [49], [51], [56], [57], [59], [60]) a cause-
effect connection. One class of pesticides, neuro-active neonicotinoids, has been
identified as harmful, although sublethal, to honey bee colonies, particularly
managed colonies in contaminated agricultural fields ( [9], [20], [32], [33], [59],
[60]). In an earlier work [48], we surveyed these studies, and developed a math-
ematical model to better understand this controversy. This model was based
on a scalar difference equation formulation of honey bee colony population dy-
namics that incorporated the rate of homing failure of contaminated forager
bees. This rate, together with the fractions of uncontaminated and contami-
nated forager bees, was critical in causation of CCD.

Forager bees leave the hive at sunrise each day to gather pollen, resin, and
other resources for the worker and juvenile bees in the hive ( [1]). At sunset
they return to the hive, and contribute to the care and rearing of juvenile bees
( [1], [34], [42]). In [48] these issues were surveyed and incorporated into a
model of CCD. In [48], a critical viability threshold of the forager population
was analyzed, and proved deterministic for colony survival. If the sum of both
uncontaminated and contaminated foragers was above this threshold, then
CCD did not occur. Since contaminated forager bees had an increased homing
failure above the normal homing failure of uncontaminated forager bees, the
total forager population could be above or below the viability threshold. Thus,
the total number of forager bees, as well as the fraction of contaminated forager
bees, are deterministic for CCD. In [48], the fraction of contaminated bees
that failed to return home each day and the daily rate of contamination were
incorporated into a quantity R1, which could predict CCD (R1 ą 1). Field
studies specifying the value of R1 could thus provide predictions for CCD.

In this work, we extend the analysis in [48] to consider another significant
factor of EPC in CCD: the spatial heterogeneity of contamination locations
and the variability of forager bees in their patterns of returning to preferred lo-
cation sites. Spatial heterogeneity of forager bees influences their survivability
beyond the parametrically determined threshold in the spatially inhomoge-
neous case in [48]. The survivability threshold depends, in fact, on the spatial
variation of contaminated regions. There are two main strategies that forager
bees use to seek resources in their spatial environment: one is the use of social
information from other bees communicated through waggle dancing to deter-
mine the distance and direction of preferred locations ( [8], [41], [54], [55]); the
other is the use of memorized information to fly to familiar preferred locations
( [29], [30]). In 1973, Karl von Frisch won the Nobel Prize for his experiments
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that established the role of waggle dancing in the communication of forager
bees for preferred locations ( [65]). However, recent experiments ( [30]) found
that 93% of the forager bees follow individually acquired information to locate
resources.

In our model, we will assume that honey bee colonies are located in en-
vironments with an equal food resource gradient in all directions, where the
social information communicated by waggle dancing is of less importance. We
will assume that a proportion q of forager bees memorize the spatial informa-
tion of their previous preferred locations, and go repeatedly to these locations.
The remaining 1´q proportion of bees, travel in random directions to seek new
resources. Thus, heterogeneous spatial pesticide contamination in the colony
foraging region results in variable fractions of the forager bee population that
become contaminated. Our model is designed, particularly, for application to
managed colonies in industrial agricultural settings, where these spatial con-
ditions are common.

The organization of this paper is as follows: in Section 2 we formulate
our spatial model of the population dynamics of forager bees; in Section 3 we
analyze our model without pesticide contamination in the spatial environment;
in Section 4 we analyze our model with pesticide contamination in the spatial
environment; in Section 5 we provide numerical simulations of our model; and
in Section 6 we provide some conclusions from our model for EPC in CCD.

2 Spatial distribution of forager bees

In this section, we formulate a model for the spatial distribution of forager
bees. In our model, we do not include worker bees in the hive, who are a
majority of the bee population, with primary function to care for juvenile
bees. Worker bees remain in the hive and do not become contaminated from
contact with pesticides outside the hive. We define Gpτ, x, yq, px, yq P R2

`, as
the spatial probability density function of forager bees in the hive, where τ is
a given value. Thus, Gpτ, x, yq satisfies

ĳ

R2

Gpτ, x, yq dx dy “ 1, for τ ą 0.

For simplicity, we choose G as the Gaussian function

Gpτ, x, yq “ 1

4πετ
e
´
px´ x0q

2
` py ´ y0q

2

4ετ ,

where px0, y0q is center of the hive and σ “
?

2ετ is the standard deviation of
G for a given value of ε and τ . The choice of a Gaussian distribution is made
for simplicity, since the hive is very small in relation to the foraging region.
The values of ε and τ are chosen so that G represents a very small region
compared to the foraging region of forager bees. The foraging region is taken
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as all of R2, where it is understood that forager bees remain near the hive and
away from the boundaries of the foraging region, as governed by the spatial
parameters of the model.

Let ∆ “ B
2

Bx2 `
B
2

By2 be the Laplacian in L1pR2q and let tT ptqutě0 be the

strongly continuous semigroup of bounded linear operators in L1pR2q gener-
ated by ε∆:

pT ptqgqpx, yq “
1

4πεt

ĳ

R2

e´
px´pxq2`py´ pyq2

4εt gppx, pyq dpx dpy, for g P L1pR2q, t ě 0.

Then, Gpτ, x, yq “ pT pτqδq px, yq, where δ is the Dirac delta function centered
at px0, y0q. By the semigroup property of tT ptqutě0, we have

pT pt` τqδq px, yq “ pT ptqT pτqδq px, yq “ Gpt` τ, x, yq, t, τ ě 0, px, yq P R2,

where Gpτ ` t, x, yq is the spatial distribution of forager bees at time t with
respect to spatial location px, yq P R2 in the environmental region of the colony.

3 Model without pesticide contamination

We first assume that there is no pesticide contamination in the environment.
Forager bees leave the hive at sunrise each day and return to the hive at
nightfall. Let upt, x, yq be the density of forager bees at time t and location
px, yq P R2. At the start of the first day, the initial distribution of forager bees
is

up0, x, yq “ u0px, yq ě 0,

where u0 P L
1
`pR2q, and

U0 “

ĳ

R2

u0px, yqdxdy

is the total number of forager bees at time t “ 0.
During the first day, the forager bees diffuse randomly in R2, which means

that u satisfies the following equation for each t P r0, 1q:

Btupt, x, yq “ ε∆upt, x, yq ´ µpx, yqupt, x, yq, for px, yq P R2, (1)

where

Uptq “

ĳ

R2

upt, x, yq dx dy,

is the total number of forager bees at time t P r0, 1q, µpx, yq ě 0 is the
mortality rate of the bees, and ε is the diffusion rate. The mortality rate µpx, yq
incorporates homing failure and all other causes of mortality for forager bees.
We assume that µ is a bounded continuous nonnegative function on R2.
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At the end of the first day, we assume that all forager bees not subject to
mortality return home, and the total population at the end of the first day is

Up1´q “

ĳ

R2

up1´, x, yq dx dy.

The forager bees that have returned to the hive on the first day contribute to
the care of juvenile bees in the hive. We use the following Allee functional to
describe their contribution to the production of forager bees that eventually
leave the hive to go foraging:

β Up1´q2

χ2 ` Up1´q2
,

where β is the maximal production parameter and χ is the sigmoidal Hill
function production parameter ( [48]).

Remark 1 Many mathematical models of CCD have used Allee forms involving
the development of juvenile bees, including [2], [3], [4], [5], [10], [11], [18], [19],
[26], [27], [36], [37], [39], [40], [43], [47], [52], [53], [64].

There are two types of behaviors of forager bees, when they return home
at the end of the day and go foraging the next day. A proportion of forager
bees will return back to the hive and start over the next day from the hive
without memory of their location the previous day. We model their foraging
behavior on the second day with diffusion. The second type of behavior of
forager bees involves those who remember a favorable foraging location from
the previous day. In the morning of the next day, these bees will go directly
to these locations.

By combining these two types of behavior and supposing that the forager
bees distribute in the hive following the Gaussian probability density Gpτ, x, yq,
we obtain u1px, yq, which is the distribution of forager bees in the morning of
the second day:

u1px, yq “ Gpτ, x, yq
ˆ

β Up1´q2

χ2 ` Up1´q2
` p1´ qq Up1´q

˙

` qup1´, x, yq, (2)

where q P r0, 1s is the fraction of forager bees that follow the second type of
behavior.

In (2), Gpτ, x, yq
ˆ

β Up1´q2

χ2 ` Up1´q2

˙

represents the new forager bees produced

in the hive. The term Gpτ, x, yqp1 ´ qq Up1´q represents the bees that start
the second day by diffusing from the hive. The term qup1´, x, yq represents
the bees that remember their locations from the previous day and start the
next day from these locations. We neglect the time required for their travel to
these locations, which is very short.

Remark 2 We remark that environmental resource heterogeneity could be in-
corporated by assuming that the fraction q “ qpx, yq is spatially dependent.
Field studies have shown that bees are more likely to return back to resource
favorable locations ( [38], [50], [61]).
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3.1 Case q “ 0 and µpx, yq constant

When q “ 0 all the bees we will diffuse from the hive in the morning of the
next day. In this case we obtain

u1px, yq “ Gpτ, x, yq
ˆ

β Up1´q2

χ2 ` Up1´q2
` Up1´q

˙

.

The dynamical properties of the model in this case are similar to the spatially
independent model without space in [48].

Suppose that µ is a constant. Since q “ 0, without loss of generality, we
assume that u0px, yq is a multiple of Gpτ, x, yq. Then, in the morning of the
first day, the initial condition is

u0px, yq “ Gpτ, x, yqUp0q “ Up0qpT pτqδqpx, yq.

By (1), we have

upt, ¨, ¨q “ e´µtT ptqu0 “ Up0qe´µtT pt` τqδ, t P p0, 1q,

and at sunset of the first day, the population density is

up1´, ¨, ¨q “ e´µT p1qu0 “ e´µUp0qT p1` τqδ.

Thus, the total population at sunset of the first day is

Up1´q “

ĳ

R2

up1´, x, yq dx dy “ e´µUp0q.

Taking into consideration the recruitment of new forager bees, the population
at the sunrise of the second day is

up1, x, yq “ Gpτ, x, yqUp1q

“ Gpτ, x, yq
ˆ

β Up1´q2

χ2 ` Up1´q2
` Up1´q

˙

“ Gpτ, x, yq

˜

β pe´µUp0qq
2

χ2 ` pe´µUp0qq
2 ` e

´µUp0q

¸

“ Gpτ, x, yq
ˆ

β Up0q2

rχ2 ` Up0q2
` e´µUp0q

˙

where

rχ :“
χ

e´µ
.

For days n “ 1, 2, . . . , we obtain the difference equation

upn` 1, x, yq “ Gpτ, x, yq
ˆ

β Upnq2

rχ2 ` Upnq2
` e´µUpnq

˙

. (3)
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Therefore, integrating over R2, we obtain the difference equation

Upn` 1q “
β Upnq2

rχ2 ` Upnq2
` e´µUpnq, n “ 0, 1, . . . . (4)

Define

rβ :“
β

1´ e´µ
,

and

R0 :“
rβ

2rχ
“

βe´µ

2χ p1´ e´µq
.

The equilibria for (4) are

0 ă U´ :“
rβ ´

b

rβ2 ´ 4rχ2

2
ă U` :“

rβ `

b

rβ2 ´ 4rχ2

2
,

whereever R0 ą 1. When R0 ă 1, (4) has only trivial equilibrium 0.

Remark 3 If U´, U`, and µ are known, then β and χ can be determined by
the following formulas:

rβ “ U` ` U´ “
β

1´ e´µ
,

rχ2 “
pU` ` U´q

2 ´ pU` ´ U´q
2

4
“ χ2e2µ.

Theorem 1 Suppose q “ 0 and µ is constant. The following hold:

(i) If R0 ă 1, the only equilibrium of (3) in L1pR2q is 0, which is globally
asymptotically stable.

(ii) If R0 ą 1, (3) has three nonnegative equilibria in L1pR2q: 0, u´, u`, where

0 ă u´ “ Gpτ, x, yqU´ ă u` :“ Gpτ, x, yqU`.

Moreover, 0 and u` are locally asymptotically stable. If Up0q P r0, U´q, the
solution converges to 0; if Up0q P pU´,8q, the solution converges to u`.

Proof In Lemma 2.1 in ( [48]), we proved that if R0 ă 1, then Upnq converges
to 0, and if R0 ą 1, then Upnq converges to 0 when Up0q P p0, U´q, and Upnq
converges to U` when Up0q P pU´,8q. Define upx, yq :“ Gpτ, x, yqU , where
U “ 0, U´, or U`. Then,

ĳ

R2

|upn, x, yq ´ upx, yq| dx dy “

ĳ

R2

|Gpτ, x, yqUpnq ´ upx, yq| dx dy

“ |Upnq ´ U |,

and the conclusions follow from Lemma 2.1 in [48].
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3.2 Case q ě 0 and µpx, yq is not constant

We impose the following additional assumption on µpx, yq: There exists a con-
stant µ0 ą 0 such that

µpx, yq ě µ0, for all px, yq P R2. (5)

We work in the complete metric spaceX “ L1
`pR2q with the metric induced

by the L1 norm. Let L : L1
`pR2q Ñ L1

`pR2q be the operator defined by

Lpu0q “ u1,

where u1 is defined in (2) and u0 P L
1
`pR2q.

In order to describe the long term behavior of the model, we consider the
following spatial difference equation

#

un`1 “ Lun, n “ 0, 1, . . . ,

u0 P L
1
`pR2q.

(6)

We will prove the existence of a global attractor of L. Let α be the Kuratowski
measure of noncompactness, i.e.

αpBq “ inftr ą 0 : B has a finite cover of sets of diameter less than ru,

for any bounded set B Ă X.
We recall definitions and results concerning global attractors (see Chapter

2 in [31] or Chapter 1 in [66]). A continuous mapping F on a complete metric
space pZ, dq is said to be point dissipative if there exists a bounded set B Ă Z
such that Lnu0 P B for all u0 P Z and n ě N “ Npu0q; F is said to be α-
condensing if αpLpBqq ă αpBq for any nonempty bounded closed set B Ă Z
with αpBq ą 0, and F maps bounded sets into bounded sets in Z; a connected,
compact, invariant (that is, F pAq “ A) set A Ă Z is said to be a global attractor
for F if A attracts bounded sets of Z in the sense that

lim
nÑ8

δ pFnpBq, Aq “ 0

where Hausdorff semi-distance δ pB,Aq is defined by

δ pB,Aq “ sup
uPB

inf
vPA

dpu, vq.

If F is point dissipative, α-condensing, and orbits of bounded sets are bounded,
then F has a global attractor.

Theorem 2 (Existence of global attractor) Suppose (5) holds. Let the
mapping L : X Ñ X be defined as above. Then, L is monotone increasing,
point dissipative, and α-condensing. Moreover, L has a global attractor.
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Proof The monotonicity of L follows from the comparison principle of parabolic
problems and the monotonicity of (2). First, we show that L is point dissipa-
tive. For any u0 P X, by the variation of constant formula, for t P p0, 1q, we
have

upt, ¨, ¨q “ e´µ0tT ptqu0 ´

ż t

0

e´µ0pt´sqT pt´ sqpµ´ µ0qups, ¨, ¨qds,

ď e´µ0tT ptqu0.

Therefore,
Up1´q ď e´µ0Up0q.

It follows that

}u1}L1 “

ĳ

R2

ˆ

Gpτ, x, yq
ˆ

β Up1´q2

χ2 ` Up1´q2
` p1´ qq Up1´q

˙

` qup1´, x, yq

˙

dxdy

“
β Up1´q2

χ2 ` Up1´q2
` Up1´q

ď
β Up0q2

rχ2 ` Up0q2
` e´µ0Up0q

“
β }u0}

2
L1

rχ2 ` }u0}2L1

` e´µ0}u0}L1 .

Therefore,

}Lu0}L1 ď
β }u0}

2
L1

rχ2 ` }u0}2L1

` e´µ0}u0}L1 . (7)

Since }Lu0}L1 ď β ` e´µ0}u0}L1 , we have

}Lnu0}L1 ď β ` e´µ0pβ ` e´µ0}Ln´2u0}L1q

“ β ` βe´µ0 ` e´2µ0}Ln´2u0}L1 .

By induction,

}Lnu0}L1 ď

n´1
ÿ

k“0

βe´kµ0 ` e´nµ0}u0}L1

ď
β

1´ e´µ0
` e´nµ0}u0}L1 .

Therefore, L is point dissipative, and the orbits of bounded sets of L are
bounded, that is, for any bounded set B Ă X, the set tLnu0 : n ě 0 and u0 P
Bu is bounded in X.

We show that L is α-condensing. From (7), we can see that L maps
bounded sets to bounded sets in X. The mapping L can be decomposed as
L “ L1 ` L2, where

L1u0 “ Gpτ, x, yq
ˆ

β Up1´q2

χ` Up1´q2
` p1´ qq Up1´q

˙
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and
L2u0 “ qup1´, x, yq.

where up1´, x, yq is the solution of (1) at time t “ 1.
Since L1 is of rank 1, it is compact. Since }L2u0}L1 ď qe´µ0}u0}L1 , for any

bounded set B Ă X, we have

αpLpBqq ď αpL1pBqq `αpL2pBqq “ αpL2pBqq ď qe´µ0αpBq.

Therefore, L is α-condensing. Since L is point dissipative, α-condensing, and
the orbits of bounded sets of L are bounded, L has a global attractor.

3.3 Case q ą 0 and µpx, yq constant

We note that R0 does not depend on q. When µpx, yq is constant and q ą 0,
the solution of (6) satisfies the following difference equation:

un`1px, yq “ Gpτ, x, yqh pUpnqq ` qe´µpT p1qunqpx, yq, (8)

where

hpUq :“
β U2

rχ2 ` U2
` p1´ qqe´µU,

and

Upnq “

ĳ

R2

unpx, yq dx dy.

By integration of (8) in space, we obtain (4). So the dynamics of the total
population is described by (4).

Equilibria: The equilibrium solution satisfies

u “ Gpτ, x, yq
ˆ

β Ū2

rχ2 ` Ū2
` p1´ qq e´µŪ

˙

` qe´µT p1qū,

where

Ū “

ĳ

R2

ūpx, yq dx dy.

By integrating in space, we obtain the equilibrium equation for (4). Therefore,
Ū is equal to 0, Ū´ or Ū`. Define

U‹ :“
β Ū2

rχ2 ` Ū2
` p1´ qq e´µŪ ,

then
u “ Gpτ, x, yqU‹ ` qe´µT p1q pGpτ, x, yqU‹ ` qe´µT p1qpūqq
“ Gpτ, x, yqU‹ ` qe´µGpτ ` 1, x, yqU‹ ` pqe´µq

2
T p2q puq

and, by induction, we obtain

u “ Σně0

`

qe´µ
˘n Gpτ ` n, x, yqU‹. (9)
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By integrating both side of (9), we deduce that

U “
ÿ

ně0

pqe´µqnU‹ “
1

1´ qe´µ
U‹,

which implies

U‹ “
`

1´ qe´µ
˘

U.

Therefore, replacing U‹ in (9), we obtain an explicit formula for the equilibrium

u “
`

1´ qe´µ
˘

Σně0

`

qe´µ
˘n Gpτ ` n, x, yqU. (10)

Theorem 3 Suppose that µ is constant. Let tunu be the solution of (6). The
following results hold:

(i) If R0 ă 1, then un converges to 0 P L1.
(ii) If R0 ą 1 we have the following alternatives:

(a) If Up0q ă U´ then limnÑ8 un “ 0 in L1;
(b) If Up0q “ U´ then limnÑ8 un “ u´ in L1;
(c) If Up0q ą U´ then limnÑ8 un “ u` in L1.

Proof (i): If R0 ă 1, by ref[Lemma 2.1, MWW], we have limnÑ8 Upnq “ 0.
Therefore, limnÑ8 L

nu0 “ 0 in L1pΩq.

(ii): Since the total population satisfies (4), by Lemma 2.1 in [48] we have
limnÑ8 Upnq “ U where U “ 0 if Up0q ă U´, U “ U´ if Up0q “ U´, and
U “ U` if Up0q ą U´.

By Theorem 2, we know that tununě0 is relatively compact. Therefore,
there exists an omega-limit set ωpu0q which is invariant by L. Let tvnunPZ by
a complete orbit of (8) on ωpu0q. Then for each n P Z

vn`1px, yq “ Gpτ, x, yqh
`

U
˘

` qe´µpT p1qvnqpx, yq.

Therefore

vn`1px, yq “ Gpτ, x, yqh
`

U
˘

` qe´µpT p1qGpτ, x, yqh
`

U
˘

qpx, yq

`
`

qe´µ
˘2
pT p2qvn´1qpx, yq,

and by induction we obtain for each integer n P Z

vn “ Σkě0

`

qe´µ
˘n Gpτ ` n, x, yqU “ u.

Therefore, ωpu0q “ tūu and the proof is complete.
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4 Model with pesticide contamination

In this section, we will model the effect of contamination due to pesticide in
the environment on the dynamics of forager bees. Let upt, x, yq and cpt, x, yq
be the density of uncontaminated and contaminated forager bees at time t and
location px, yq P R2, respectively. We start day one with the initial distribution

up0, x, yq “ u0px, yq and cp0, x, yq “ c0px, yq,

where u0, c0 P L
1
`pR2q.

During the first day, the spatial dynamics of the forager bee population is
described for t P r0, 1q by

"

Btupt, x, yq “ ε∆upt, x, yq ´ µpx, yqupt, x, yq ´ αpx, yqupt, x, yq
Btcpt, x, yq “ ε∆cpt, x, yq ´ µpx, yqcpt, x, yq ` αpx, yqupt, x, yq

(11)

where ε ą 0 is the diffusion rate, µpx, yq is the mortality rate of the bees
and αpx, yq is the rate of contamination of the forager bees by pesticides. We
assume that α and µ are bounded continuous nonnegative functions on R2.

At the end of the day, the number of uncontaminated and contaminated
bees are respectively

Up1´q “

ĳ

R2

up1´, x, yqdxdy and Cp1´q “

ĳ

R2

cp1´, x, yqdxdy.

We assume that a fraction 1 ´ p of contaminated forager bees fail to return
home at the end of each day, in addition to the normal homing failure of
all foraging bees contained in the mortality rate µ. Then by combining the
previous mechanisms, we obtain the following model

u1px, yq “ Gpτ, x, yq
“

B ` p1´ qq Up1´q
‰

` qup1´, x, yq (12)

c1px, yq “ Gpτ, x, yq
“

p1´ qq p Cp1´q
‰

` q p cp1´, x, yq (13)

where

B “
β pUp1´q ` pCp1´qq

2

χ2 ` pUp1´q ` pCp1´qq
2 . (14)

On the second day, we replace the initial values up0, x, yq “ u0px, yq and
cp0, x, yq “ c0px, yq by up1, x, yq “ u1px, yq and cp1, x, yq “ c1px, yq, and we
solve (11) with this new initial condition on the time interval t P r1, 2s. The
same process carries over to time intervals r2, 3s, r3, 4s and so on.

Remark 4 Our formulation of the increased homing failure of contaminated
bees, beyond the normal homing failure in the mortality rate µpx, yq, as an
increased homing failure fraction 1´p, relates to field studies ( [3], [32], [33]). In
these studies, individual bees were monitored with radio-frequency tags, which
provided specific identification of homing failure as the cause of mortality. It
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is recognized that pesticide contamination has sublethal effect on forager bees
( [3], [11], [20], [21], [44], [58], [59]). The connection of EPC to CCD is indirect
in that forager bees have reduced days for foraging and reduced contributions
to caring for juvenile bees in the hive, but are not directly lethally affected.

Let Y “ L1
`pΩq ˆ L1

`pΩq with the metric induced by the L1 ˆ L1 norm.
Let S : Y Ñ Y be a continuous mapping defined by

Spu0, c0q “ pu1, c1q, pu0, c0q P Y.

To study the dynamics of this model, we need to consider the solutions of the
following spatial difference equation:

#

pun`1, cn`1q “ Spun, cnq, n “ 0, 1, . . . ,

pu0, c0q P Y.
(15)

4.1 Case q=0, µpx, yq and αpx, yq constant

Since q “ 0, we may also assume that u0 and c0 are multiples of Gpτ, x, yq:

u0px, yq “ Up0qGpτ, x, yq “ Up0qpT pτqδqpx, yq,

c0px, yq “ Cp0qGpτ, x, yq “ Cp0qpT pτqδqpx, yq.

By the first equation of (11), we have

upt, ¨, ¨q “ e´pµ`αqtT ptqu0, t P p0, 1q.

Summing up the two equations of (11), we obtain

pu` cqpt, ¨, ¨q “ e´µtT ptqpu0 ` c0q, t P p0, 1q.

Therefore,

cpt, ¨, ¨q “ e´µtp1´ e´αtqT ptqu0 ` e
´µtT ptqc0, t P p0, 1q.

It follows that

Up1´q “ e´pµ`αqUp0q and Cp1´q “ e´µ
 

Cp0q `
“

1´ e´α
‰

Up0q
(

.

By (12)-(14) and q “ 0, for n “ 0, 1, . . . , we have

$

’

&

’

%

un`1px, yq “ Gpτ, x, yq
„

β V pnq2

χ2 ` V pnq2
` e´pµ`αqUpnq



cn`1px, yq “ Gpτ, x, yqrpe´µCpnq ` pe´µ r1´ e´αsUpnqs
(16)

with

V pnq :“ pe´µCpnq `
”

pe´µ ` p1´ pqe´pα`µq
ı

Upnq.
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Integrating over R2, we obtain

$

’

&

’

%

Upn` 1q “
β V pnq2

χ2 ` V pnq2
` e´pµ`αqUpnq,

Cpn` 1q “ pe´µCpnq ` pe´µ r1´ e´αsUpnq,

(17)

where the equations in (17) are the same as in the model without space ( [48]).
Define

pβ :“
β

1´ e´pµ`αq
and pχ :“

χ

e´pµ`αq r1` pκ2s

with

κ1 :“
p e´µ r1´ e´αs

1´ p e´µ
and κ2 :“ eα

 

κ1 `
“

1´ e´α
‰(

“
eα ´ 1

1´ pe´µ
.

Let

R1 :“
pβ

2pχ
“

β r1` pκ2s

2χ
“

epµ`αq ´ 1
‰ “

β rr1´ pe´µs ` p reα ´ 1ss

2χ
“

epµ`αq ´ 1
‰

r1´ pe´µs
.

The following result follows from the analysis in [48]:

Theorem 4 Suppose that q “ 0 and µpx, yq and αpx, yq are constant func-
tions. Let tpunpx, yq, cnpx, yqqu be the solution of (15). Then the following
results hold:

(i) If R1 ă 1, then limnÑ8pun, cnq “ p0, 0q P L
1 ˆ L1 in Y .

(ii) If R1 ą 1, then (15) has three equilibria in Y :

p0, 0q ! Gpτ, x, yqpU´, C´q ! Gpτ, x, yqpU`, C`q,

where

C˘ “ κ1U˘,

and

0 ă U´ :“
pβ ´

b

pβ2 ´ 4pχ2

2
ă U` :“

pβ `

b

pβ2 ´ 4pχ2

2
.

Moreover if U0 ă U´ and C0 ă C´, then limnÑ8pun, cnq “ p0, 0q in Y ; if
U0 ą U´ and C0 ą C´, then limnÑ8pun, cnq “ Gpτ, x, yqpU`, C`q in Y .

Proof In [48, Lemma 3.1, Propositions 3.2-3.3], we have proved that the solu-
tion pUpnq, Cpnqq of (17) satisfies: if R1 ă 1, pUpnq, Cpnqq converges to p0, 0q;
if R1 ą 1, pUpnq, Cpnqq converges to p0, 0q when U0 ă U´ and C0 ă C´ and
pUpnq, Cpnqq converges to pU`, C`q when U0 ą U´ and C0 ą C´. The results
then follow from (16).
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4.2 Case q ě 0

In this section we prove the existence of a global attractor for S, when q ě 0.

Theorem 5 (Existence of global attractor) Suppose (5) holds. Let the
mapping S : Y Ñ Y be defined as above. Then, S is point dissipative and
α-condensing. Moreover, S has a global attractor.

Proof First, we show S is point dissipative and maps bounded sets to bounded
sets. From (5) µpx, yq ě µ0, and by the first equation of (11), we have

upt, ¨, ¨q “ e´µ0tT ptqu0 ´

ż t

0

e´µ0pt´sqT pt´ sqpα` µ´ µ0qups, ¨, ¨qds

ď e´µ0tT ptqu0,

for all t P p0, 1q. Therefore,

Uptq ď e´µ0t}u0}L1 , t P p0, 1q. (18)

Summing the two equations in (11), we have

cpt, ¨, ¨q ď upt, ¨, ¨q ` cpt, ¨, ¨q

“ e´µ0tT ptqpu0 ` c0q ´

ż t

0

e´µ0pt´sqT pt´ sqpµ´ µ0qpups, ¨, ¨q

`cps, ¨, ¨qqds (19)

ď e´µ0tT ptqpu0 ` c0q,

for all t P p0, 1q. Therefore, for all t P p0, 1q, we have

Cptq ď e´µ0tp}u0}L1 ` }c0}L1q. (20)

Combining (18)-(20), we have
#

Up1´q ď e´µ0}u0}L1 ,

Cp1´q ď e´µ0p}u0}L1 ` }c0}L1q.
(21)

By (12)-(13), we have

$

’

’

’

’

’

&

’

’

’

’

’

%

}u1}L1 “

ĳ

R2

u1px, yqdxdy “
β pUp1´q ` pCp1´qq

2

χ2 ` pUp1´q ` pCp1´qq
2 ` Up1

´q,

}c1}L1 “

ĳ

R2

c1px, yqdxdy “ pCp1´q.

(22)

It follows that S maps bounded sets to bounded sets in Y . By the first equa-
tions of (21) and (22), }u1}L1 ď β`e´µ0}u0}L1 . Using an induction argument
similar to the proof of Theorem 2, we obtain

}un}L1 ď β̄ ` e´µ0n}u0}L1 , (23)
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with β̄ “ β{p1´ e´µ0q. By the second equation of (22), we have

}c1}L1 ď a}c0}L1 ` a}u0}L1 ,

with a “ pe´µ0 ă 1. It then follows that

}cn}L1 ď a}cn´1}L1 ` a}un´1}L1

ď ap}cn´2}L1 ` a}un´2}L1q ` a}un´1}L1

ď an}c0}L1 ` pan}u0}L1 ` an´1}u1}L1 ` ¨ ¨ ¨ ` a}un´1}L1q

ď an}c0}L1 ` pan}u0}L1 ` an´1pβ̄ ` e´µ0}u0}L1q

` ¨ ¨ ¨ ` apβ̄ ` e´µ0pn´1q}u0}L1qq

ď an}c0}L1 `
β̄a

1´ a
` ne´µ0n}u0}L1 . (24)

By (23)-(24), S is point dissipative and the orbits of bounded sets are bounded.
To see S is α-condensing, we decompose S as S “ S1 ` S2, where

S1pu0, c0q “ Gpτ, x, yqpB ` p1´ qq Up1´q, p1´ qqpCp1´qq

and
S2pu0, c0q “ pqup1

´, x, yq, qpcp1´, x, yqq.

Since S1 is of rank 1, it is compact. By (19),

}S2pu0, c0q}L1 ď qe´µ0p}u0}L1 ` }c0}L1q.

Therefore, for any bounded set B Ă Y ,

αpSpBqq “ αpS2pBqq ď qe´µ0αpBq.

Thus, S is α-condensing. Since S is point dissipative, α-condensing, and the
orbits of bounded sets of S are bounded, S has a global attractor.

5 Numerical simulations

In this section, we provide numerical simulations. The parameters used in
the simulations are listed in Table 1 below. We note that U` and U´ are
the equilibria (for the total population) of the model without contamination,
where their formulas are given in Section 3.1. Forager bees are approximately
25% of bees in a colony ( [1]). The number of bees in a colony may vary from
20, 000 to 60, 000 ( [7]) and in the simulations we choose U` “ 10, 000 as a
typical value for a stabilized colony. We choose U´ “ 7, 000 as a typical value
for the viable population size threshold. We use the values of U`, U´, and the
forager mortality parameter µ to estimate β and χ, as in Section 3.1.

Forager bees have a range of several kilometers ( [1], [28], [50]). In the
simulations, we use a rectangular domain of 2 km by 2 km, which is repre-
sented as r0, 2s ˆ r0, 2s. We suppose that the hive is at the center p1, 1q of the
foraging domain. We assume that forager bees mostly remain removed from
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the boundaries of this region. We set the initial distribution at the hive as
u0px, yq “ N0Gpx, yq, where N0 “ 10, 000 and Gpx, yq is a Gaussian density
function centered at p1, 1q with standard deviation 1.5812 10´4. The initial
value u0px, yq is shown in Figure 1. We interpret a day to be the time of
sunlight between successive calendar days, which allows seasonal and regional
variability in the time variable t in days. The spatially dependent contamina-
tion rate αpx, yq is shown in Figure 2. We set αpx, yq “ α0pG1px, yq`G2px, yqq,
where α0 “ 0.5 and G1px, yq (respectively G2px, yq) is a Gaussian distribution
function centered at p0.55, 0.55q (respectively p1.45, 1.45q ) with standard devi-
ation 0.1. This means the contamination due to pesticide in the environment is
concentrated around the two locations centered at p0.55, 0.55q and p1.45, 1.45q.

The parameter p has the following interpretation: 1 ´ p is the fraction
of contaminated forager bees that have an increased homing failure due to
contamination, beyond the normal homing failure of uncontaminated forager
bees incorporated into the mortality rate µ. The parameter q is the fraction of
forager bees, both contaminated and uncontaminated, that return each day to
their previous locations ( [8], [29], [55]). We note that the experiments in [30]
found that 93% of bees followed individually acquired information to return
to their previous spatial locations. In our simulations we will vary both p and
q to illustrate the importance of spatial heterogeneity of contaminated regions
for CCD.

Parameter Description Estimated value - Reference

U` Stable uncontaminated 10, 000 [16], [17], [19], [64]
equilibrium population size

U´ Unstable uncontaminated 7, 000 [16], [17], [19], [64]
equilibrium population size

µ Mortality rate due to homing 1{6.5 day´1

failure or other causes [5], [6], [17], [23], [33], [47], [62]
β Maximal production parameter 2421.13 [63]
χ Sigmoidal Hill production parameter 7173.56 [63]

1´ p Homing failure fraction of .7´ .9 [32], [33]
bees due to contamination

q Fraction of bees returning to q P r0, 1s [29], [30]
their previous location each day

ε Diffusion rate 0.1 km2 day´1

[22], [35], [46], [45], [50]
Gpx, yq Initial Gaussian distribution center at p1.0km, 1.0kmq

of bees in the hive
σ Standard deviation of G(x,y) 1.5812ˆ 10´4

αpx, yq Spatial contamination rate 0.5pG1px, yq ` G2px, yqq
G1px, yq Gaussian distribution for center at p0.55km, 0.55kmq,

contaminated region 1 standard deviation 0.1
G2px, yq Gaussian distribution for center at p1.45km, 1.45kmq,

contaminated region 2 standard deviation 0.1

Table 1 This table lists the parameters used in the simulations. β and χ are estimated
from U`, U´, and µ, as in Section 3.1.
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Fig. 1 The initial distribution u0px, yq of forager bees in the hive. The hive is located
at the center of a rectangular domain 2 km by 2 km. u0px, yq “ N0Gpx, yq, where N0 “

10, 000 and Gpx, yq is a Gaussian density function centered at p1, 1q with standard deviation
1.5812 ˆ 10´4. The initial condition in the right figure shows a visible black dot in the
center. The left figure shows a narrow pin-like distribution.

In the simulations, it is assumed that there are no contaminated bees at
the beginning of the first day, which corresponds to the insertion of a managed
colony into an agricultural setting. The simulations show the spatial change
between the first and second days. After the second day, the spatial pattern
of contaminated bees is approximately the same in the following days, but
with changes in total populations numbers. Thus, we show only the spatial
distributions in the first two days in Figures 3, 4, 6, and 7.

Fig. 2 These figures show the function αpx, yq “ α0pG1px, yq ` G2px, yqq, which represents
the intensity of two contaminated regions in the environment. Here, α0 “ 0.5 and G1px, yq
(respectively G2px, yq) is a normal distribution function centered at p0.55, 0.55q (respectively
p1.45, 1.45q ) with standard deviation 0.1.
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5.1 Simulation with p “ 1.0 and q “ 0.0

In the first simulation, we set p “ 1.0 and q “ 0, which means that there is no
increase in homing failure of contaminated bees above normal homing failure
incorporated into µ, and no forager bees remember their locations from the
previous day. Figures 3 and 4 show the spatial density of uncontaminated and
contaminated bees, respectively. Figure 3 shows that the uncontaminated bees
are gradually spreading out from the hive in the first two days, independently
of the location of the two contaminated regions. Figure 4 shows that contami-
nated bees concentrate around the pesticide locations during the first day and
gradually spread out randomly from the hive in the second day.

5.2 Simulation with q “ 0.0 and p “ 1.0, 0.898, and 0.684

In this simulation, we explore the effect of varying p numerically. We set q “
0.0, which means that no bees remember their locations from the previous day.
We show three simulations, with p “ 1.0, 0.898 and 0.684. We see in Figure
5 that the total population remains above U´ “ 7, 000 for p “ 1.0, but not
for p “ 0.898 and p = 0.684. CCD occurs for p “ 0.898 and p = 0.684, but
not for p “ 1.0. Therefore, the higher homing rate failure of contaminated
bees may collapse the colony. In this simulation, 7, 000 is a threshold value for
collapse or persistence. The reason is as follows: sum the two equations of (11)
to obtain

pu` cqpt, ¨, ¨q “ e´µtT ptqpu0 ` c0q, t P p0, 1q;

integrate in space to obtain

Up1´q ` Cp1´q “ e´µpUp0q ` Cp0qq,

and sum (12)-(13) and integrate in space to obtain

Up1q ` Cp1q ď
β pe´µpUp0q ` Cp0qqq

2

χ2 ` pe´µpUp0q ` Cp0qqq
2 ` e

´µpUp0q ` Cp0qq, (25)

where “ ď ” becomes “ “ ” if and only if p “ 1.0. This means that U´ “ 7, 000
is a critical value for the total population. That is, if p “ 1.0, Upnq ` Cpnq
converges to 0 if it is below 7, 000 for some n, and Upnq ` Cpnq persists if it
is above 7, 000 for some n. If p ă 1.0, by (25), we still have that Upnq ` Cpnq
converges to 0 if it is below U´ “ 7, 000 for some n. In Figure 5, the total
population of forager bees falls sharply below 7, 000 when p “ 0.898 or p “
0.684, but converges to U` “ 10, 000 when p “ 1.0.
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Fig. 3 These figures show the density of uncontaminated bees at time t “ 2, 6, 8 hours after
the sunrise at day 1 (left side) and day 2 (right side). Here, p “ 1.0 (there is no increase in
homing failure of contaminated bees above normal homing failure) and q “ 0 (all foraging
bees diffuse randomly each day starting from the hive).

5.3 Simulation with p “ 1.0 and q “ 0.9

In this simulation, all contaminated bees return home (p “ 1.0) and 90% of all
bees return to their locations from the previous day (q “ 0.9). Figure 6 shows
that the uncontaminated bees are asymmetrically spreading from the hive on
the second day, compared with Figure 3, when q “ 0. Figure 7 shows that the
contaminated bees arise from the two contaminated regions in the first day,
which is similar to Figure 4. However, in the second day, the contaminated bees
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Fig. 4 These figures show the density of contaminated bees at time t “ 2, 6, 8 hours after
the sunrise at day 1 (left side) and day 2 (right side). As in Figure 3, p “ 1.0 (there is no
increase in homing failure of contaminated bees above normal homing failure incorporated)
and q “ 0.0 (all foraging bees diffuse randomly each day starting from the hive).

are concentrating near the two contaminated regions, which is in contrast to
the second day in Figure 4.

5.4 Simulation with q “ 0.9 and p “ 1.0, 0.898, and 0.684

In this simulation, we assume q “ 0.9 (90% of bees return to their location
from the previous day). Figure 8 shows three simulations with p “ 1.0, 0.898,
and 0.684. We observe that the total number of uncontaminated bees decreases
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p “ 1 p “ 0.898 p “ 0.684

Fig. 5 The fraction q “ 0.0 and the fraction p is 1.0 (left), 0.898 (middle) and 0.684
(right). The first row of figures show the total number of uncontaminated bees, the second
row of figures show the total number of contaminated bees, and the last row of figures show
the fraction of contaminated bees over the total number of bees. CCD occurs for p “ 0.898
and p “ 0.684, but not for p “ 1.0. The horizontal axis variable is days.

in each case, and the total number of bees, both contaminated and uncontam-
inated, falls sharply for p “ 0.898 and p “ 0.684, but stabilizes for p “ 1.0.
CCD occurs for p “ 0.898 and p = 0.684, but not for p “ 1.0.

In Figure 9, we show the same simulations as in Figure 8, except that
q “ 0.1 (10% of bees return to their location from the previous day). Compared
to Figure 8, the number of contaminated bees rises more quickly when q “
0.9 than when q “ 0.1. The reason is, when uncontaminated bees return
repeatedly to contaminated locations remembered from previous days, they
are more likely to become contaminated from these multiple visits. This feature
depends on the level of the contamination rate αpx, yq, which in this example,
requires multiple visits to a contaminated region for a forager bee to become
contaminated.

In Figure 10, we show that for the same value of p “ 0.9 ă 1, CCD occurs
for q “ 0.9, 0.5, 0.1. Actually, the total population of bees for q “ 0.9, 0.5 falls
below 7000 at day 28, and therefore CCD occurs. When q “ 0.1, it is not
clear from the figure whether CCD occurs. However, if we run the simulation
with more iterations, one can see that CCD occurs eventually. Therefore, the
contaminated population rises and the total population falls more quickly and
CCD is more likely to occur when q is larger. We remark that it is possible to
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Fig. 6 These figures show the density of uncontaminated bees at time t “ 2, 6, 8 hours after
the sunrise at day 1 (left side) and day 2 (right side). Here, p “ 1.0 (all contaminated bees
return home) and q “ 0.9 (90% bees go straight to locations from the previous day).

find a value for p that is close to 1 (e.g. p “ 0.99) such that CCD occurs when
q is close to 1 and CCD is avoided when q is close to 0. However, with our
current parameter values, it requires enormous amount of iterations to confirm
whether the total population converges to zero and a positive equilibrium.

6 Conclusions

We have analyzed the impact of spatially heterogeneous environmental pes-
ticide contamination (EPC) as a cause of honey bee colony collapse disorder
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Fig. 7 These figures show the density of contaminated bees at time t “ 2, 6, 8 hours after
the sunrise at day 1 (left side) and day 2 (right side). Here, p “ 1.0 (all contaminated bees
return home) and q “ 0.9 (90% of bees go straight to locations from the previous day).

(CCD). We have focused on spatial foraging patterns of foraging honey bees
and spatial variation in the locations of pesticide contamination. Foraging
honey bees depart and return to their colony hive each day, and we have in-
corporated this behavior into the equations of our model. Many studies of
honey bee foraging have reported the ability of foraging bees to return to
previous locations in successive days, and we have incorporated this behav-
ior into our model. This navigation capacity arises from individually acquired
information.

Our model consists of equations for the spatial distributions of uncontam-
inated and contaminated forager bees. Our model has three key features:
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p “ 1 p “ 0.898 p “ 0.684

Fig. 8 The fraction q “ 0.9 and the fraction p is 1.0 (left), 0.898 (middle) and 0.684
(right). The first row of figures show the total number of uncontaminated bees, the second
row of figures show the total number of contaminated bees, and the last row of figures show
the fraction of contaminated bees over the total number of bees. CCD occurs for p “ 0.898
and p “ 0.684, but not for p “ 1.0. The horizontal axis variable is days.

1. Honey bee colonies have a population viability threshold, below which CCD
occurs. In our model this threshold is connected to a parameter p that
represents the fraction of contaminated forager bees that maintain their
ability to return home each day. If the total population of forager bees, both
contaminated and uncontaminated, remains above this viability threshold,
then CCD is avoided.

2. The fraction q of forager bees that return each day to their previous loca-
tions affects the proportion of forager bees that becomes contaminated. If
spatial variation is present in the contaminated environment and q is rela-
tively high, then a higher proportion of forager bees become contaminated,
because the probability of contamination is increased with repeated visits
to the same contaminated site.

3. CCD is quantifiable in terms of the parameters p and q, with each param-
eter contributing its effect to the outcome.

Our model is relevant for managed honey bee colonies in industrial agri-
culture, where environmental pesticide exposure is a world-wide problem. In
these settings, CCD can be reduced by the following measures: (1) reduction of
pesticide use in regions where managed colonies are located; (2) identification
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p “ 1 p “ 0.898 p “ 0.684

Fig. 9 The fraction q “ 0.1 and the fraction p is 1.0 (left), 0.898 (middle) and 0.684
(right). The first row of figures show the total number of uncontaminated bees, the second
row of figures show the total number of contaminated bees, and the last row of figures show
the fraction of contaminated bees over the total number of bees. CCD occurs for p “ 0.898
and p “ 0.684, but not for p “ 1.0. The horizontal axis variable is days.

of pesticide-contaminated regions and placement of managed colonies to avoid
these regions; (3) maintenance of managed colonies at higher population levels
that remain above population viability thresholds.
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q “ 0.9 q “ 0.5 q “ 0.1

Fig. 10 The fraction p “ 0.9 and the fraction q is 0.9 (left), 0.5 (middle) and 0.1 (right).
The first row of figures show the total number of uncontaminated bees, the second row of
figures show the total number of contaminated bees, and the last row of figures show the
fraction of contaminated bees over the total number of bees. Although CCD occurs for all
three cases, the total population drops more quickly when q is larger. The horizontal axis
variable is days.
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